首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1715篇
  免费   276篇
  国内免费   214篇
化学   1853篇
晶体学   11篇
力学   10篇
综合类   27篇
数学   83篇
物理学   221篇
  2024年   4篇
  2023年   53篇
  2022年   60篇
  2021年   155篇
  2020年   148篇
  2019年   119篇
  2018年   125篇
  2017年   99篇
  2016年   126篇
  2015年   78篇
  2014年   116篇
  2013年   228篇
  2012年   98篇
  2011年   65篇
  2010年   80篇
  2009年   67篇
  2008年   88篇
  2007年   79篇
  2006年   76篇
  2005年   69篇
  2004年   52篇
  2003年   53篇
  2002年   33篇
  2001年   30篇
  2000年   14篇
  1999年   12篇
  1998年   14篇
  1997年   8篇
  1996年   10篇
  1995年   8篇
  1994年   6篇
  1993年   10篇
  1992年   6篇
  1991年   6篇
  1990年   5篇
  1989年   2篇
  1988年   1篇
  1986年   1篇
  1981年   1篇
排序方式: 共有2205条查询结果,搜索用时 0 毫秒
71.
In this work, a simple and green method is reported for the biosynthesis of Cu/bone nanocomposite using Cordyline fruticosa extract as a stabilizer and reductant. Animal bone was used as a natural support to prevent the accumulation of Cu nanoparticles. The catalytic activity of Cu/bone nanocomposite was assessed in the synthesis of 1‐substituted 1H‐1,2,3,4‐tetrazoles and reduction of various organic dyes, including 4‐nitrophenol (4‐NP), nigrosin (NS), congo red (CR) and methylene blue (MB). The best catalytic performance in the synthesis of 1‐substituted tetrazoles was achieved using 0.05 g of Cu/bone nanocomposite at 120°C. In addition, under optimal conditions, the absorption bands corresponding to 4‐NP, CR, NS and MB completely disappeared after about 6 min, 3 min, 50 s and 7 s, respectively. The biosynthesis protocol used in the preparation of Cu/bone nanocomposite offers a very attractive area for further research.  相似文献   
72.
In the present work, for the first time we have designed a novel approach for the synthesis of N‐benzyl‐N‐aryl‐5‐amino‐1H‐tetrazoles using reduced graphene oxide (rGO) decorated with Cu‐Ni bimetallic nanoparticles (NPs). In situ synthesis of Cu/Ni/rGO nanocomposite was performed by a cost efficient, surfactant‐free and environmentally benign method using Crataegus azarolus var. aronia L. leaf extract as a stabilizing and reducing agent. Phytochemicals present in the extract can be used to reduce Cu2+ and Ni2+ ions and GO to Cu NPs, Ni NPs and rGO, respectively. Analyses by means of FT‐IR, UV–Vis, EDS, TEM, FESEM, XRD and elemental mapping confirmed the Cu/Ni/rGO formation and also FT‐IR, NMR, and mass spectroscopy as well as elemental analysis were used to characterize the tetrazoles. The Cu/Ni/rGO nanocomposite showed the superior catalytic activity for the synthesis of N‐benzyl‐N‐aryl‐5‐amino‐1H‐tetrazoles within a short reaction time and high yields. Furthermore, this protocol eliminates the need to handle HN3.  相似文献   
73.
In this study, Co3O4 nanocatalysts were constructed in environmentally appropriate conditions using controlled, effective, and facile microwave method. The final nanostructures were characterized by SEM, XRD, and TEM analyses. The products had a small size distribution, homogeneous morphology, and crystallographic structures associated with the formation of Co3O4 nanostructures. Moreover, EDS mapping analysis confirmed the existence of Co and O elements in the final structure, and the magnetic properties of the samples were investigated by VSM. The application of this nanostructure in a catalytic process was further examined, and the results suggested that it could be used as a novel candidate for the synthesis of arylidene barbituric and Meldrum,s acid through Knoevenagel condensation of aldehydes by barbituric and Meldrum,s acid in aqueous media. The high yield of these nanocatalysts would be justified by the nature of the nanostructure as well as the experimental procedure developed in this study, which affected the physicochemical features of the products.  相似文献   
74.
Aryl halides and especially inactive aryl chlorides were coupled to benzenoid aromatic rings in a Suzuki–Miyaura coupling reaction in the absence of organic solvents and toxic phosphine ligands. The reaction was catalysed by a recoverable magnetic nanocatalyst, Pd@Fe3O4, in aqueous media. This method is green, and the catalyst is easily removed from the reaction media using an external magnetic field and can be re‐used at least 10 times without any considerable loss in its activity. The catalyst was characterized using scanning and transmission electron microscopies, thermogravimetric analysis, inductively coupled plasma spectroscopy, Fourier transform infrared spectroscopy, CHN analysis, X‐ray diffraction and vibrating sample magnetometry.  相似文献   
75.
A heterogeneous and recyclable catalyst with a high loading of silver nanoparticles was synthesized via the silver nanoparticles being supported onto the surface of magnetic nanoparticles coated with poly(4‐vinylpyridine). The synthesized catalyst was used in the dehydrogenation of alcohols to corresponding carbonyl compounds. A broad diversity of alcohols was converted into their corresponding carbonyl compounds in excellent yields. The catalyst was easily recovered by applying an external magnetic field and reused for seven reaction cycles without considerable loss of activity. The catalyst was fully characterized using various techniques.  相似文献   
76.
Superparamagnetic nanoparticles of modified vitamin B3 (Fe3O4@Niacin) represent a new, efficient and green biocatalyst for the one‐pot synthesis of 2‐amino‐3‐cyanopyridine derivatives via four‐component condensation reaction between aldehydes, ketones, malononitrile, and ammonium acetate under microwave irradiation in water. This new magnetic organocatalyst was easily isolated from the reaction mixture by magnetic decantation using an external magnet and reused at least six times without significant degradation in the activity. The catalyst was fully characterized by FT‐IR, XRD, SEM, VSM, UV–Vis, DLS and EDS. Excellent yield, very short reaction time (7–10 min), operational simplicity, easy work‐up procedure, avoidance of hazardous or toxic catalysts and organic solvents are the main advantages of this green methodology which makes it more economic than the other conventional methods.  相似文献   
77.
In this work, a magnetic hybrid dichromate nanocomposite with triphenylphosphine surface modified superparamagnetic iron oxide nanoparticles (SPIONs) as a recyclable nanocatalyst was designed, prepared and characterized by Fourier transform infrared spectroscopy (FT‐IR) spectra, X‐ray diffraction (XRD) pattern analysis, vibrating sample magnetometer (VSM) curves, X‐ray fluorescence (XRF) analysis, thermogravimetric analysis (TGA), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) images and dynamic light scattering (DLS) analysis. Then, it was used in a green and efficient procedure for one‐pot multicomponent synthesis of polyhydroquinoline derivatives by the condensation of aldehydes, dimedone or 1,3‐cyclohexadione, ethyl acetoacetate and ammonium acetate. This protocol includes some new and exceptional advantages such as short reaction times, low catalyst loading, high yields, solvent‐free and room temperature conditions, easy separation and reusability of the catalyst.  相似文献   
78.
Zeolites are crystalline microporous materials with application in diverse fields, especially in catalysis. The ability to prepare zeolites with targeted physicochemical properties for a specific catalytic application is a matter of great interest, because it allows the efficiency of the entire chemical process to be increased (higher product yields, lower undesired by‐products, less energy consumption, and cost savings, etc). Nevertheless, directing the zeolite crystallization towards the material with the desired framework topology, crystal size, or chemical composition is not an easy task, since several variables influence the nucleation and crystallization processes. The combination of accumulated knowledge, rationalization, and innovation has allowed the synthesis of unique zeolitic structures in the last few years. This is especially true in terms of the design of organic and inorganic structure‐directing agents (SDAs). In this Minireview we will present the rationale we have followed in our studies to synthesize new zeolite structures, while putting this in perspective with the advances made by other researchers of the zeolite community.  相似文献   
79.
An aqueous aza-Michael reaction is efficiently achieved with excellent conversions without any additives. The method works very well on a molar scale with selectively for aliphatic amines. An intermediate for spermine is also made by this green process.  相似文献   
80.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号